Glucocorticoids modulate human brown adipose tissue thermogenesis in vivo

نویسندگان

  • Hannah Scotney
  • Michael E. Symonds
  • James Law
  • Helen Budge
  • Don Sharkey
  • Konstantinos N. Manolopoulos
چکیده

INTRODUCTION Brown adipose tissue (BAT) is a thermogenic organ with substantial metabolic capacity and has important roles in the maintenance of body weight and metabolism. Regulation of BAT is primarily mediated through the β-adrenoceptor (β-AR) pathway. The in vivo endocrine regulation of this pathway in humans is unknown. The objective of our study was to assess the in vivo BAT temperature responses to acute glucocorticoid administration. METHODS We studied 8 healthy male volunteers, not pre-selected for BAT presence or activity and without prior BAT cold-activation, on two occasions, following an infusion with hydrocortisone (0.2mg.kg-1.min-1 for 14h) and saline, respectively. Infusions were given in a randomized double-blind order. They underwent assessment of supraclavicular BAT temperature using infrared thermography following a mixed meal, and during β-AR stimulation with isoprenaline (25ng.kg fat-free mass-1.min-1 for 60min) in the fasting state. RESULTS During hydrocortisone infusion, BAT temperature increased both under fasting basal conditions and during β-AR stimulation. We observed a BAT temperature threshold, which was not exceeded despite maximal β-AR activation. We conclude that BAT thermogenesis is present in humans under near-normal conditions. Glucocorticoids modulate BAT function, representing important physiological endocrine regulation of body temperature at times of acute stress.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Traveling from the hypothalamus to the adipose tissue: The thermogenic pathway

Brown adipose tissue (BAT) is a specialized tissue critical for non-shivering thermogenesis producing heat through mitochondrial uncoupling; whereas white adipose tissue (WAT) is responsible of energy storage in the form of triglycerides. Another type of fat has been described, the beige adipose tissue; this tissue emerges in existing WAT depots but with thermogenic ability, a phenomenon known ...

متن کامل

Transcription regulator TRIP-Br2 mediates ER stress-induced brown adipocytes dysfunction

In contrast to white adipose tissue, brown adipose tissue (BAT) is known to play critical roles for both basal and inducible energy expenditure. Obesity is associated with reduction of BAT function; however, it is not well understood how obesity promotes BAT dysfunction, especially at the molecular level. Here we show that the transcription regulator TRIP-Br2 mediates ER stress-induced inhibiti...

متن کامل

FGF21 mimetic antibody stimulates UCP1-independent brown fat thermogenesis via FGFR1/βKlotho complex in non-adipocytes

OBJECTIVE Fibroblast Growth Factor 21 (FGF21) is a potent stimulator of brown fat thermogenesis that improves insulin sensitivity, ameliorates hepatosteatosis, and induces weight loss by engaging the receptor complex comprised of Fibroblast Growth Factor Receptor 1 (FGFR1) and the requisite coreceptor βKlotho. Previously, recombinant antibody proteins that activate the FGFR1/βKlotho complex wer...

متن کامل

Assessing brown adipose tissue in humans

In obesity, impaired energy expenditure is associated with adaptive thermogenesis. The current standard methodology for detecting brown adipose tissue (BAT), a thermogenic tissue important in nonshivering thermogenesis, uses fluorodeoxyglucose positron emission tomography (FDG-PET) and requires cold stimulation. Knowing that BAT is highly innervated and regulated by the sympathetic nervous syst...

متن کامل

SRC-1 and TIF2 Control Energy Balance between White and Brown Adipose Tissues

We have explored the effects of two members of the p160 coregulator family on energy homeostasis. TIF2-/- mice are protected against obesity and display enhanced adaptive thermogenesis, whereas SRC-1-/- mice are prone to obesity due to reduced energy expenditure. In white adipose tissue, lack of TIF2 decreases PPARgamma activity and reduces fat accumulation, whereas in brown adipose tissue it f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 70  شماره 

صفحات  -

تاریخ انتشار 2017